

Low Capacitance TVS Diode

- ESD / transient protection of high-speed data lines in 3.3 / 5 / 12 V applications according to: IEC61000-4-2 (ESD): ±16 kV (air) ±14 kV (contact) IEC61000-4-4 (EFT): 40 A (5 / 50 ns))
- Extremely small form factor down to 0.62 x 0.32 x 0.31 mm³
- Max. working voltage: -8 / +14 V
- Very low reverse current < 1 nA typ.
- Very low series inductance down to 0.2 nH typ.
- Low capacitance of 4 pF typ.
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

Applications

- USB 2.0, 10/100 Ethernet, Firewire, DVI
- Mobile communication
- Consumer products (STB, MP3, DVD, DSC...)
- LCD displays, camera
- Notebooks and destop computers, peripherals

ESD8V0R1B-02LS ESD8V0R1B-02LRH

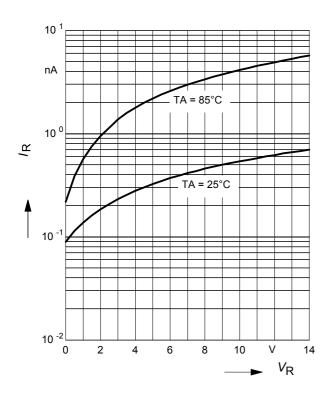
Туре	Package	Configuration	Marking
ESD8V0R1B-02LRH	TSLP-2-7	1 line, bi-directional	E
ESD8V0R1B-02LS	TSSLP-2-1	1 line, bi-directional	E

Maximum Ratings at $T_A = 25^{\circ}$ C, unless otherwise specified

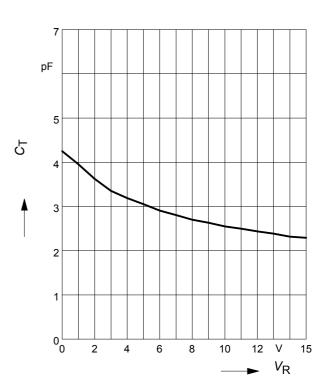
Parameter	Symbol	Value	Unit	
ESD discharge ¹⁾	V _{ESD}		kV	
air		16		
contact		14		
Peak pulse current ($t_p = 8 / 20 \ \mu s$) ²⁾	I _{pp}	1	А	
Operating temperature range	T _{op}	-55150	°C	
Storage temperature	T _{stg}	-65150		

Electrical Characteristics at $T_A = 25^{\circ}C$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.]
Characteristics					
Reverse working voltage, from pin 2 to 1	V _{RWM}	-8	-	14	V
Breakdown voltage	V _(BR)				
$I_{(BR)}$ = 1 mA, from pin 2 to 1		14.5	17	20	
$I_{(BR)}$ = 1 mA, from pin 1 to 2		8.5	11	14	
Reverse current	I _R	-	<1	50	nA
V _R = 3.3 V					
Clamping voltage	V _{CL}				V
$I_{\rm PP}$ = 1 A, $t_{\rm P}$ = 8/20 µs, from pin 2 to 1 ²)		-	23	28	
$I_{\rm PP}$ = 1 A, $t_{\rm P}$ = 8/20 µs, from pin1 to 2 ²)		-	17	22	
Line capacitance	CT	-	4	7	pF
<i>V</i> _R = 0 V, <i>f</i> = 1 MHz					
Series inductance	L _S				nH
ESD8V0R1B-02LS		-	0.2	-	
ESD8V0R1B-02LRH		-	0.4	-	

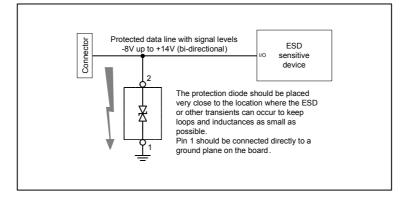

 $^{1}V_{\text{ESD}}$ according to IEC61000-4-2

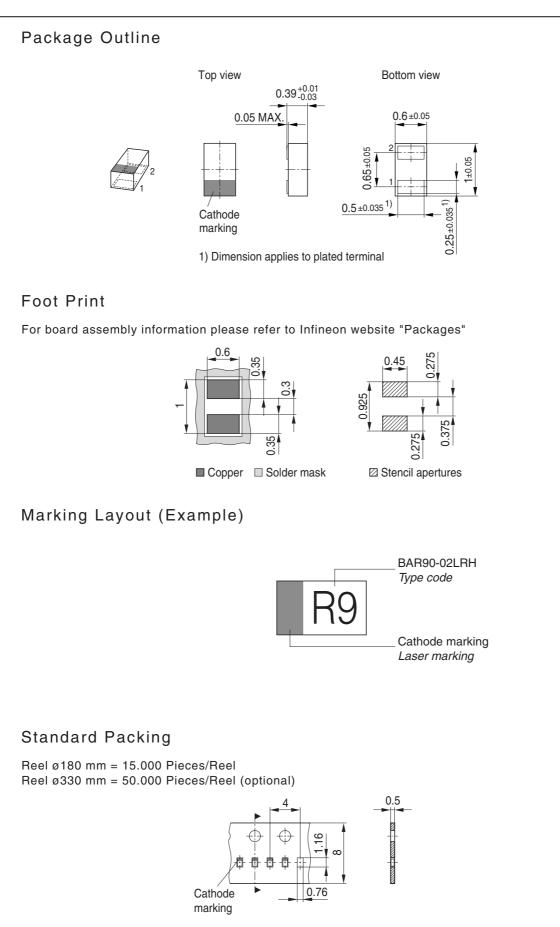
 $^2\textit{I}_{pp}$ according to IEC61000-4-5


Reverse current $I_{R} = f(V_{R})$

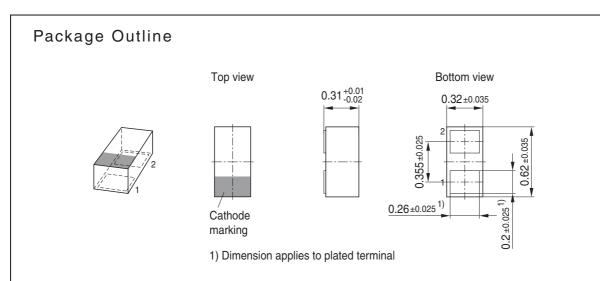
 T_A = Parameter

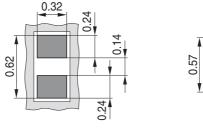
Diode capacitance $C_{T} = f(V_{R})$

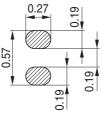

f = 1 MHz



Application example ESD8V0R1B...

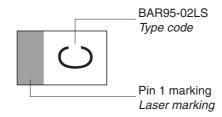

1 line, bi-directional



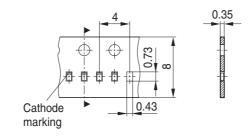


Foot Print

For board assembly information please refer to Infineon website "Packages"



Copper Solder mask


Stencil apertures

Marking Layout

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel

Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.